domingo, 30 de mayo de 2010

Blog:Daniela Margeit


sábado 29 de mayo de 2010

Dispositivos Activos ó Semiconductores.

Un semiconductor es un componente que no es directamente un conductor de corriente, pero tampoco es un aislante. En un conductor la corriente es debida al movimiento de las cargas negativas (electrones). En los semiconductores se producen corrientes producidas tanto por el movimiento de electrones como de las cargas positivas (huecos). Los semiconductores son aquellos elementos pertenecientes al grupo IV de la Tabla Periódica (Silicio, Germanio, etc.). Generalmente a estos se le introducen átomos de otros elementos, denominados impurezas, de forma que la corriente se deba primordialmente a los electrones o a los huecos, dependiendo de la impureza introducida. Otra característica que los diferencia se refiere a su resistividad, estando ésta comprendida entre la de los metales y la de los aislantes.

Los semiconductores son muy importantes en electrónica ya que gracias a ellos contamos hoy con diversos componentes de gran utilidad en electrónica, tales como diodos, transistores, tiristores, triac, etc.

El diodo:

El nacimiento del diodo surgió a partir de la necesidad de transformación de corrientes alternas en continua.

La corriente en un diodo presenta un sentido de circulación de cargas positivas que van desde el ánodo al cátodo, no permitiendo la circulación de la corriente en el sentido opuesto, lo cual nos permite la conversión de corriente alterna a continua, procedimiento conocido como rectificación. Esto ocurre porque por el diodo solamente podrá circular corriente cuando el ánodo sea más positivo que el cátodo.

Están compuestos por dos regiones de material semiconductor que se llama unión P-N que es la base de todo componente electrónico de tipo activo. Entre las dos partes de la unión P-N, y en la zona de contacto entre ambas, se produce una región denominada de transición, donde se genera una pequeña diferencia de potencial, dado que se conforma una recica una tensión al diodo con el terminal positivo conectado a la zona P y el negativo a la N se producirá una circulación de corriente entre ambas debido a que una pequeña parte de esta tensión nivelará la diferencia de potencial entre zonas, llamada tensión umbral, quedando éstas niveladas en tensión, y el resto de la tensión aplicada producirá una circulación de electrones de la zona N a la P.ombinación de electrones, quedando la zona N a mayor tensión que la zona P.

Si esa tensión externa se aplica con los bornes intercambiados, es decir el terminal positivo de la fuente conectado a la zona N y el negativo a la región P, no habrá circulación de corriente por el diodo, debido a que por efecto de la tensión aplicada se aumentará la diferencia de potencial existente entre las zonas P y N, impidiendo así la circulación de corriente a través del mismo.

Con la figura podemos tener una idea algo mas exacta de lo que sucede en el diodo cuando le aplicamos una tensión, en cualquiera de los dos sentidos (polarización directa e inversa).

El cuadrante superior derecho corresponde a la polarización directa, en el mismo podemos apreciar que existe una tensión (VU) a partir de la cual el diodo comienza a conducir, dicha tensión es la tensión umbral y varía según sea el material semiconductor empleado en la fabricación del diodo, siendo de 0,7 V para el silicio y 0,3 V para el germanio.

El cuadrante inferior izquierdo corresponde a una polarización inversa. En ella se ve que la corriente que lo atraviesa (conocida como corriente inversa) es prácticamente nula. Note que los valores menores que cero en el eje de la corriente están graduados en uA.

Nótese también que para polarización inversa mayor a VR la corriente inversa crece indefinidamente. Una tensión inversa de este valor o mayor a él daña al diodo en forma irreversible y se la conoce como tensión de ruptura o zéner.

Entre las diversas clases de diodos que se encuentran en el mercado, podemos citar las siguientes: diodos rectificadores (en montaje individual o puente rectificador), diodos de señal, diodos de conmutación, diodos de alta frecuencia, diodos estabilizadores de tensión, diodos especiales.

Componentes semiconductores www.diarioinfotec.com.ar

sábado 29 de mayo de 2010

Dispositivos de microondas

La ingeniería de microondas/milimétricas tiene que ver con todos aquellos dispositivos, componentes y sistemas que trabajen en el rango frecuencial de 300 MHz a 300 GHz. Debido a tan amplio margen de frecuencias, tales componentes encuentran aplicación en diversos sistemas de comunicación. Ejemplo típico es un enlace de Radiocomunicaciones terrestre a 6 GHz en el cual detrás de las antenas emisora y receptora, hay toda una circuitería capaz de generar, distribuir, modular, amplificar, mezclar, filtrar y detectar la señal. Otros ejemplos lo constituyen los sistemas de comunicación por satélite, los sistemas radar y los sistemas de comunicación móviles, muy en boga en nuestros días.
La tecnología de semiconductores, que proporciona dispositivos activos que operan en el rango de las microondas, junto con la invención de líneas de transmisión planares; ha permitido la realización de tales funciones por circuitos híbridos de microondas.
En estos circuitos, sobre un determinado sustrato se definen las líneas de transmisión necesarias. Elementos pasivos (condensadores, resistencias) y activos (transistores, diodos) son posteriormente incorporados al circuito mediante el uso de pastas adhesivas y técnicas de soldadura. De ahí el nombre de tecnología híbrida de circuitos integrados (HMIC: "Hibrid Microwave Integrated Circuit"). Recientemente, la tecnología monolítica de circuitos de microondas (MMIC), permite el diseño de circuitos/subsistemas capaces de realizar, muchas de las funciones mencionadas anteriormente, en un sólo "chip". Por las ventajas que ofrece ésta tecnología, su aplicación en el diseño de amplificadores para receptores ópticos, constituye un campo activo de investigación y desarrollo.
El diseño de circuitos de microondas en ambas tecnologías, ha exigido un modelado preciso de los diferentes elementos que forman el circuito. De especial importancia son los dispositivos activos (MESFET, HEMT, HBT); pues conocer su comportamiento tanto en pequeña señal como en gran señal (régimen no lineal), es imprescindible para poder predecir la respuesta de un determinado circuito que haga uso de él. El análisis, modelado y simulación de éstos dispositivos, constituye otra de las áreas de trabajo
MICROONDAS
Se denomina así la porción del espectro electromagnético que cubre las frecuencias entre aproximadamente 3 Ghz y 300 Ghz (1 Ghz = 10^9 Hz), que corresponde a la longitud de onda en vacío entre 10 cm. y 1mm.
La propiedad fundamental que caracteriza a este rango de frecuencia es que el rango de ondas correspondientes es comparable con la dimensión físicas de los sistemas de laboratorio; debido a esta peculiaridad, las m. Exigen un tratamiento particular que no es extrapolable de ninguno de los métodos de trabajo utilizados en los márgenes de frecuencias con que limita. Estos dos límites lo constituyen la radiofrecuencia y el infrarrojo lejano. En radiofrecuencia son útiles los conceptos de circuitos con parámetros localizados, debido a que, en general, las longitudes de onda son mucho mayores que las longitudes de los dispositivos, pudiendo así, hablarse de autoinducciones, capacidades, resistencias, etc., debido que no es preciso tener en cuenta la propagación efectiva de la onda en dicho elemento; por el contrario, en las frecuencias superiores a las de m. son aplicables los métodos de tipo ÓPTICO, debido a que las longitudes de onda comienzan a ser despreciables frente a las dimensiones de los dispositivos.
El método de análisis más general y ampliamente utilizado en m. consiste en la utilización del campo electromagnético caracterizado por los vectores (E, B, D y H en presencia de medios materiales), teniendo en cuenta las ecuaciones de MAXWELL (v), que rigen su comportamiento y las condiciones de contorno metálicos son muy frecuentes a estas frecuencias, cabe destacar que, p.ej, el campo E es normal y el campo H es tangencial en las proximidades externas de un conductor. No obstante, en las márgenes externas de las m. se utilizan frecuentemente los métodos de análisis correspondientes al rango contiguo del espectro; así, a frecuencias elevadas m. son útiles los conceptos de RAYO, LENTE, etc., ampliamente utilizados en óptica, sobre todo cuando la propagación es transversal electromagnética, (TEM, E y B perpendiculares entre sí y a la dirección de propagación) en el espacio libre. Por otro lado, a frecuencias bajas de m, colindantes con las radiofrecuencias, es útil la teoría de circuitos con parámetros distribuidos, en la que toma en cuenta la propagación efectiva que va a tener la onda en un elemento cualquiera. Así, un trozo de cable metálico, que en baja frecuencia representa simplemente un corto circuito que sirve para efectuar una conexión entre elementos, dejando equipotenciales los puntos que une, a alta frecuencia un sistema cuya frecuencia, por efecto peculiar, puede no ser despreciable y cuya autoinducción puede causar una impedancia que sea preciso tomar en cuenta. Entonces es preciso representar este cable a través de su impedancia (resistencia y autoinducción) por unidad de longitud.
También en la parte de instrumentación experimental, generación y transmisión de m, estas tienen peculiaridades propias que obligan a utilizar con características diferentes a los de los rangos de frecuencias vecinos. Respecto a limitaciones que impiden su funcionamiento a frecuencias de m., como a continuación esquematizamos.
Las líneas de baja frecuencia son usualmente ABIERTAS, con lo cual, si se intenta utilizar a frecuencias elevadas, automáticamente surgen problemas de radiación de la energía electromagnética; para superar este inconveniente es necesario confirmar los campos electromagnéticos, lo que normalmente se efectúa por medio de contornos metálicos; así, los sistemas de transmisión usuales a m. son, o bien lineas coaxiales, o bien, en general, guías de onda continuadas por conductores abiertos o tuberías. En este sentido es ilustrativo ver la evolución de un circuito resonante LC paralelo de baja frecuencia hacia una cavidad resonante, que es circuito equivalente en m. Como a alta frecuencia las inductancias y capacidades (ELECTROSTÁTICA; INDUCCIÓN ELECTROMAGNÉTICA), cobran gran importancia, por pequeñas que sean, un circuito resonante para frecuencias RELATIVAS ALTAS puede ser sencillamente dos placas paralelas y una espira uniendo ambas placas; es para reducir aún más la inductancia se ponen varias espiras en paralelo, se llega a obtener una región completamente cerrada por paredes conductoras.
La energía electromagnética solo puede almacenarse en una cavidad a frecuencias próximas a las denominadas de resonancia de la misma, las cuales dependen fundamentalmente de su geometría; los campos anteriores penetran solo en una capa delgada de las paredes metálicas siendo el espesor ô, de esta capa, denominada profundidad de penetración, dependiente de la frecuencia y de la conductividad del material que constituya a la cavidad a través de la expresión ô= 2/WUO, donde W,U y son respectivamente la frecuencia de la onda, la permeabilidad magnética y conductividad del material (ELÉCTRICA, CONDUCCIÓN, ELECTROMAGNETISMO) así, para los siguientes metales: aluminio, oro, cobre y plata, los valores de ô a 3Ghz son respectivamente de 1,6, 1,4, 1,2 y 1,4 u. De esta forma es fácil comprender que la energía disipada en las cavidades, si éstas están hechas por buenos conductores, es pequeña, con lo cual las Q, o factores de mérito de las cavidades resonantes Q =2 ƒƒ (energía almacenada)/(energía disipada por ciclo), suelen estar en orden de 10 ^4, pudiendo alcanzar valores mas elevados. Por otra parte el pequeño valor de ô permite fabricar guías de excelente calidad con un simple recubrimiento interior de buen material conductor, (plateado o dorado).
La utilización en m, de las válvulas de vacío convencionales, como amplificadores osciladores, esta limitada, por una parte, por el tiempo de tránsito de los electrones en el interior de la válvula y, por otra, por las inductancias y por las capacidades asociadas al cableado y los electrodos de la misma.
El tiempo de tránsito al hacerce comparable con el período de las oscilaciones, da lugar a que haya un defase entre el campo y las oscilaciones de los electrones; esto implica un consumo de energía que disminuye la impedancia de entrada de la válvula, aunque su rejilla, polarizada negativamente, no capte electrones. Las inductancias y capacidades parásitas causan efectos de resonancia y acople interelectrónico que también conducen a una limitación obvia.
Son muchas las modificaciones sugeridas y utilizadas para superar estos inconvenientes, basándose en los mismos principios de funcionamiento, pero, a frecuencias ya de lleno en el rango de las m., tanto los circuitos de válvulas como los semiconductores trabajan según una concepción completamente diferente a los correspondientes de la baja frecuencia.
GENERACIÓN DE MICROONDAS
Quizás fue el MAGNETRON, como generador de m. De alta potencia, el dispositivo que dio pie al desarrollo a gran escala de las m., al abrir paso a la utilización de sistemas de radar durante la II Guerra Mundial; sin embargo, fueron KLYSTRONS, los que dieron una mayor versatilidad de utilización de las m., sobre todo en el campo de las comunicaciones, permitiendo además una mayor comprensión de los fenómenos que tiene en lugar los tubos de m. El principio básico de funcionamiento de estos generadores es la modulación de velocidad de un haz electrónico que al atravesar una cavidad resonante, excita en ella oscilaciones electromagnéticas de la frecuencia de m, deseada. El estudio de los KLYSTRONS obligó a un amplio desarrollo desde los fenómenos de carga espacial, la interpretación de la operación de los tubos
Sin embargo, fue el desarrollo de otro tipo de válvulas, las de ONDA PROGRESIVA (TWT, Travelling-Wave Tube); siglas de ésta clase de tubos, las que dieron lugar a una mejor compresión de los fenómenos que tienen lugar en los haces electrónicos, sobre todo en lo que respecta a las ondas electromecánicas, daban lugar a amplificación o generación de m. Para que este acoplamiento sea efectivo es preciso reducir la velocidad de fase de la onda electromagnética lo cual se hace mediante estructuras periódicas de entre las cuales la más utilizada es la hélice; de esta forma es posible mantener una iteración continuada entre la onda electromagnética y el haz electrónico, modulado en velocidad, y consecuentemente en densidad, que va cediendo su energía, digamos cinética, a la onda electromagnética. Posteriormente también se desarrollo el tubo de onda regresiva (BWO< Backward- wave oscillator), en el cual la velocidad de fase de la onda va en dirección opuesta al flujo de energía en el circuito, que ofrecí a, además, una mayor amplitud de sintonía en frecuencia mediante control electrónico.
Los dispositivos anteriores se basan en la conversión de energía de continuidad en la energía de m, mientras que los amplificadores paramétricos (AMPLIFICADOR, 8) utilizan como fuente de energía una de alterna que convierten, por un procedimiento de mezcla, en la de alta frecuencia deseada. En lugar de utilizar como elemento resistivo, utilizan un elemento reactivo, como puede ser un diodo de capacidad variable, y de aquí el bajo nivel de ruido que se puede lograr. Un fundamento análogo tienen los amplificadores cuánticos MASER. Son estos amplificadores de bajo nivel de ruido los que han abierto un gran campo de operación en radioastronomía, así como las intercontinentales vía satélite etc.
Un problema conserniente al desarrollo de las m, lo ha constituido hasta ahora el precio elevado de los generadores; ha sido el decubrimiento de los osciladores a semiconductores el que a abaratado, va camino de hacerlo aun más, dichos generadores, con el cual el campo de aplicaciones de las m.
Está creciendo a un nivel tal que impide predecir las repercusiones futuras, que incluso pueden ser negativas. Estos dispositivos también tienen una concepción diferente a los usuarios de baja frecuencia esencial en que en los de baja frecuencia los electrones del semiconductor son TIBIOS en el sentido que sus energías no difieren grandemente de la red del material, mientras que en los de m. Los electrones son CALIENTES, con energías eléctricas adquiridas de campos eléctricos elevados, que pueden ser muy superiormente a energía de m.
El primero de estos dispositivos se basó en el denominado efecto GUNN que se presenta en semiconductores compuestos, como el arseniuro de galio, material en el fue inicialmente detectado, y desde entonces se han descrito muchos dispositivos, algunos basados en fenómenos bulímicos en el semiconductor, como los gunn, y otros fenómenos que tienen lugar en uniones de semiconductores.
TRANSMISIÓN DE MICROONDAS
Un sistema en el que se utilizan localmente las m. Constará fundamentalmente de un generador y de un medio de transmisión de la onda hasta la carga; en caso contrario, tendremos necesidad de un sistema emisor y otro receptor, estando el emisor compuesto por los elementos anteriormente citados, donde la carga será una antena emisora, mientras que el receptor será otra antena, medio de transmisión y detector adecuado.
Además de estos elementos existirán otras componentes como pueden ser atenuadores, desfasadores, frecuencimetros, medidores de onda estacionaria, etc.; nosotros nos vamos a circunscribir fundamentalmente a la guía de onda, como elemento fundamental de transmisión a éstas frecuencias.
Como ya se ha citado, la guía de onda es esencia una tubería metálica, a través de la cual se propaga el campo electromagnético sin prácticamente atenuación, dependiendo esta del material de que la misma esté fabricada; así, a una frecuencia determinada, y para una geometría concreta, la atenuación será tanto menor cuanto mejor conductor sea el material. A diferencia de lo que ocurre en el medio libre, en el que el haz de ondas electromagnéticas es mas o menos divergente y sus campos transversales electromagnéticos (ondas TEM, ya citadas), en una guía el campo esta confinado en su interior, evitándose la radiación hacia el exterior, y sus campos ya no pueden ser TEM sino que han de hacer necesariamente del tipo TE (campo electrónico transversal a la dirección de propagación), o bien TM (campo magnético transversal) o bien híbridos, es decir, mezcla de TE y TM.
La configuración de la geometría, tipo de excitación de la guía y frecuencia, ocurriendo además que ciertas configuraciones de campo, denominadas modos, solo son posibles a frecuencias superiores a una determinada, denominada frecuencia de corte, existiendo un modo de propagación de dichos campos, el modo fundamental, que posee la frecuencia de corte mínima. Por debajo de esta frecuencia la guía no propaga la energía electromagnética.
APLICACIONES DE LAS MICROONDAS
Sin duda podemos decir que el campo mas valioso de aplicación de las m. es el ya mencionado de las comunicaciones, desde las que pudiéramos denominar privadas, pasando por las continentales e intercontinentales, hasta llegar a las extraterrestres.
En este terreno, las m. actúan generalmente como portadoras de información, mediante una modulación o codificación apropiada. En los sistemas de radar, cabe citar desde los empleados en armamento y navegación, hasta los utilizados en sistemas de alarma; estos últimos sistemas suelen también basarse en efecto DOPPLER o en cambios que sufre la razón de onda estacionaria (SWR) de una antena, pudiendo incluso reconocerse la naturaleza del elemento de alarma. Sistema automático de puertas, medida de velocidad de vehículos, etc.
Otro gran campo de aplicación es el que se pudiera denominar científico. En radioastronomía ocurre que las radiaciones extraterrestres con frecuencia comprendidas entre 10 Mhz y 10Ghz pueden atravesar el filtro impuesto por la atmósfera y llegar hasta nosotros.
Entre estas radiaciones están algunas de tipo espectral, como la línea de 1420 OH, y otras de tipo continuo debidas a radiación térmica, emisión giromagnética, sincrotónica, etc. La detección de estas radiaciones permite obtener información de la dinámica y constitución del universo. En el estudio de los materiales (eléctricos, magnéticos, palmas) las m. se pueden utilizar bien para la determinación de parámetros macroscópicos, como son la permitividad eléctrica y la permeabilidad magnética, bien para el estudio directo de la estructura molecular de la materia mediante técnicas espectroscópicas y de resonancia.
En el campo médico y biológicose utilizan las m. Para la observación de cambios fisiológicos significativos de parámetros del sistema circulatorio y respiratorio.
Es imposible hacer una enumeración exhaustiva de aplicaciones que, aparte de las ya citadas, pueden ir desde la mera confección de juguetes hasta el controlar de procesos o funcionamiento de computadores ultra rápidos. Quizá el progreso futuro de las microondas. Esta en el desarrollo cada día mayor, de los dispositivos a estado sólido, en los cuáles se consigue una disminución de precio y tamaño que puede llegar a niveles insospechados; estos sistemas son la combinación de los generadores a semiconductores con las técnicas de circuiteria integrada, fácilmente adaptables a la producción en masa.
Sin embargo no todo son beneficios; un crecimiento incontrolado de la utilización de las m, puede dar lugar a problemas no solo de congestión del espectro, interferencias, etc., sino también de salud humana; este último aspecto no está lo suficientemente estudiado, como se deduce del hecho de que los índices de peligrosidad sean marcadamente diferentes de unos países a otros.
PROPAGACIÓN DE MICROONDAS
Las microondas ocupan una porción del espectro de frecuencias entre 1 y 300 Ghz que corresponde a 10 cm y mm respectivamente, en longitudes de onda. En la práctica son ondas del orden de 1 Ghz a 12 Ghz.
La banda espectral de las microondas de divide en sub-bandas tal como se muestra en la tabla.

FRECUENCIA (GHz) LONGITUD DE ONDA APROXIMADA (Cm)
S 1.5 A 8 10
X 8 A 12.5 3
K 12.5 A 40 1.1
Q 40 A 50 0.8

Sub-bandas en las que se divide la banda espectral de las microondas.
Los sistemas de microondas son usados en enlaces de televisión, en multienlaces telefónicos y general en redes con alta capacidad de canales de información.
Las microondas atraviesan fácilmente la ionosfera y son usadas también en comunicaciones por satélites.
La longitud de onda muy pequeña permite antenas de alta ganancias.
Como el radio de fresnel es relativamente pequeño, la propagación se efectúa como en el espacio libre.
Si hay obstáculos que obstruyan el radio de fresnel, la atenuación es proporcional al obstáculo.
De la ecuación se obtiene la atenuación Pr/Pt en enlaces espaciales
Pr/Pt (dB) = Gt (dB) + Gr (dB) +20 log h (m) - 22 - 20 log r (Km)
donde r es la distancia del enlace, h es la longitud de onda Gt Y Gr son las ganancias del transmisor y del receptor receptivamente.
A la atenuación en espacio libre se le agregan algunos valores de atenuación debido a obstáculos:
• 6 dB: Incidencia restante.
• 40 dB: Bloqueo total del haz.
La atenuación puede variar de 6 a 20 dB dependiendo del tipo de superficie que provoca la difracción. Así:
• 6 dB: Para una difracción en filo de cuchilla, con incidencia resante.
• 20 dB: Difracción con incidencia resante en obstáculo mas redondeado como terreno ligeramente ondulado o agua que sigue la curvatura de la tierra.
En condiciones desfavorables las perdidas por reflexión pueden ser de hasta 50 db (propagación sobre mar).
Si la superficie es rugosa se consideran despreciables las perdidas por reflexión.
La temperatura efectiva de ruido Te del circuito receptor, referida a los terminales de entrada y la cifra de ruido o (factor de ruido) F de un circuito están relacionados de la siguiente forma:
F = 1 + Te/To
F es la razón de la potencia de ruido real de salida (al conectar en un generador de temperatura normalizado de To=290^oK) y la potencia de ruido de salida que existiría para la misma entrada, si el circuito no tuviera ruidos propios.
Por tanto, se nota que
F = 1 o 0 dB corresponde a Te = 0^K
F = 2 o 3 dB corresponde a Te = 290^oK, etc.
Dispositivos de microondas http://cetitdh.tripod.com/Microondas.pdf

domingo 30 de mayo de 2010

Publications Development of RF System Performance Evaluation Test Set for KOMPSAT-2

Abstract. The satellite RF system is an essential part of the control and management of a satellite from the ground station and provides a communication link during the entire satellite mission life. The RF system should be fully evaluated for reliability and stability on the ground, as defined by the requirements of the satellite mission. The evaluation of an RF system can be verified by measuring the RF link parameter and then comparing and analyzing the result with the RF system requirements. Since the system test for satellites requires advanced technology and has a high cost with limited time, however, it is difficult to access technically for many parts. This paper describes the design and verification of the RFTS (Radio Frequency Test Set) and the RTS (RFTS Test Software), which AITC developed in KARI to evaluate a satellite RF system. The developed test system was used to perform an RF functional test on an ETB (Engineering Test Bed), and the RFTS's full functions were debugged to provide a reliable function for the KOMPSAT-2 Satellite Test. The RFTS showed a high degree of reliability, conformity and repeatability for each test case at any time. It is now being applied to the RF system evaluation test of KOMPSAT-2 FM during KOMPSAT-2's integration and environment test phases. Hereinafter, this system can be applied to the next generation of satellites as well as to the RF payload system as a unique KOMPSAT series RF test system.

domingo 30 de mayo de 2010

SISTEMA PARA LA MEDICIÓN DE LA RAZÓN DE ONDA ESTACIONARIA



H. Peña Pedraza1 , A. Patiño1 , A. Sarmiento1
1 Universidad de Pamplona, ciudadela universitaria, Km. 1 vía a Bucaramanga.
Grupo de Investigaciones en Óptica &Plasma, Línea de Investigación en Instrumentación Físia
(Recibido 20 de Sep.2005; Aceptado 13 de Mar. 2006; Publicado 16 de Jun. 2006)
RESUMEN
La Razón de Onda Estacionaria (ROE) o Standing Wave Ratio (SWR), es un parámetro de gran
importancia en todo sistema donde se interconecten dos o mas módulos eléctricos o electrónicos
de impedancias diferentes. La ROE permite determinar si los diferentes sistemas están adaptados
adecuadamente o si por el contrario están desacoplados. En el presente trabajo se describen los
principios físicos de operación de un sistema de instrumentación básico para el estudio de la adaptación
de impedancias en circuitos de RF y microondas. Se describe un método útil para la adaptación
de impedancias en circuitos de microondas a partir de la medición de su ROE.
Palabaras claves: razon de onda, acople, instrumentation.
ABSTRACT
The Standing Wave Ratio (SWR), is a parameter of great importance in all system where two or
more electrical or electronic modules of different impedance are interconnected. SWR allows determining
if the different systems are adapted suitably. In the present work are described the
physical principles of operating of a basic system to adaptation of impedance of RF and microwaves.
A useful method for the adaptation of impedance in circuits of microwaves from the measurement
of his SWR is described.
Keywords: wave ratio, connects, instrumentation.
1. Introducción
La razón de onda estacionaria ROE ( SWR de sus siglas en ingles), es uno de los conceptos
físicos más importantes cuando se tiene que adaptar o transmitir una onda electromagnética o mecánica entre dos o más dispositivos eléctricos, electrónicos, ópticos, mecánicos o en general entre dos sistemas que tengan diferentes impedancias intrínsecas.
Cuando un movimiento ondulatorio cambia bruscamente de medio de propagación, la onda viajera va a ser afectada y el resultado final se puede expresar por las diferencias entre las
impedancias que ofrecen los diferentes medios al avance de la onda. Cuando las impedancias de los dos medios coinciden se dice que el sistema está adaptado o acoplado, en la mayoría de los casos es deseable que exista un acoplamiento máximo de las impedancias para que haya una máxima transmisión de la onda. Para estudiar la ROE y los efectos de la adaptación de impedancias partimos del hecho de que una onda viajera en un medio, al encontrar en su camino otro medio diferente, parte de la onda se transmite y parte de ella se refleja, produciéndose en el primer medio el fenómeno de la interferencia de dos ondas viajeras en sentidos opuestos, es decir una onda estacionaria.
Estudiaremos las características físicas del problema de la adaptación de impedancias
en el caso de las ondas electromagnéticas, utilizando para tal fin circuitos de Microondas (MO).
La elección de este tipo de ondas centimétricas es apropiada debido a su corta longitud de onda, lo que nos permite realizar mediciones con gran facilidad y precisión.
En una onda electromagnética, la razón de onda estacionaria ROE, se define como: la razón entre los valores máximo del campo eléctrico ( →Emáx ) de la onda estacionaria y su valormínimo ( →Emín ), como se muestra en la ecuación






donde Vmáx y Vmín son los potenciales eléctricos asociados a sus respectivos camposeléctricos.
Existen varios métodos de adaptación de impedancias en una guía de ondas de MO, la mayoría de ellos son obstáculos que se disponen dentro de la guía, lo que trae como consecuencia la alteración de las condiciones de propagación de la onda electromagnética, traduciéndose esto en un cambio de la impedancia o admitancia característica de la línea de transmisión. La adaptación de impedancias en una guía de ondas se puede realizar utilizando atenuadores, irises o diafragmas, postes o tornillos de longitud y posición variables, los cuales se disponen en lugares estratégicos dentro de la guía de ondas de tal forma que se satisfagan las condiciones de adaptación de impedancias o admitancia en el sistema en estudio.
Una herramienta muy utilizada en la electrónica de altas frecuencias para llevar a cabo la adaptación de impedancias, es la Carta de Smith. Dicha carta es un método gráfico en coordenadas polares de impedancias o admitancias normalizadas con respecto a la impedancia característica de la línea de transmisión que se esta utilizando.
1.1 Líneas de transmisión: Cuando necesitamos transportar de un punto a otro una onda
electromagnética de MO es necesario emplear un medio físico adecuado. Las líneas de transmisión se emplean para transmitir punto a punto potencia de RF o información en una onda portadora utilizando una u otra técnica de modulación en amplitud, frecuencia o fase. Las líneas de transmisión para microondas pueden ser: las microtiras y las guías de ondas que consisten de tubos metálicos huecos de geometría rectangular, circular o coaxial, que confinan en su interior los campos electromagnéticos [1].
1.2 Configuraciones del campo dentro de las guías: Las ecuaciones de Maxwell son las bases teóricas y el punto de partida para el análisis de todos los procesos electromagnéticos que ocurren en el interior de las guías de MO. El comportamiento general de los campos dentro de las estructuras guías de ondas se describen mediante la solución de la ecuación de onda teniendo en cuenta el sistema de coordenadas más adecuado a la geometría de la guía de onda [1].
Las soluciones de la ecuación de onda en una guía de ondas de una geometría determinada la buscamos en la forma de los llamados tipos de modos TE y TM (transversal eléctrico y transversal magnético), en dependencia de cual de los campos EZ o HZ respectivamente son cero.
2. Procedimiento experimental para la medición de la razón de onda estacionaria.
La Figura No.1b representa un circuito básico de MO que consta de: un generador de MO klystron Reflex tipo 2K25 o 723 A/B. Un klystron es una válvula termoiónica especializada [2] El generador está acoplado a una guía de ondas rectangular (una guía de ondas ranurada con un detector de campo y conector BNC) y, ésta a su vez, a una antena de bocina piramidal rectángular. La frecuencia natural de oscilación del dispositivo se puede ajustar mecánicamente con ayuda de una pequeña varilla que puede roscarse y que esta situada a un lado del tubo; electrónicamente se puede variar la frecuencia de oscilación variando el potencial aplicado al reflector. El dipolo eléctrico de la salida desde la cavidad resonante del klystron reflex se acopla al centro de la guía rectangular de tal forma que el modo que se excite y propague sea el modo fundamental TE10 .

Figura No. 1. Circuito básico de MO: a) Esquema, b) Elementos. y c) Modo fundamental TE10 en la guía rectangular.
Para la adaptación de impedancias se procede así: se realiza el montaje de la Figura No.1b, inicialmente se determina la longitud de onda de la señal generada por el klystron y su frecuencia, con ayuda de un detector de diodo Schottky de RF [2] y un multímetro digital o un osciloscopio. Para tal fin, procedemos a medir la magnitud y posición exacta, en la línea de transmisión (guía ranurada), de los máximos y mínimos del campo eléctrico de la onda estacionaria en corto circuito y con carga (bocina a adaptar). La figura No.2a muestra los resultados experimentales obtenidos, allí se pueden encontrar los valores promedios de:




Figura No.2. a) Campo eléctrico de la onda estacionaria en función de la posición en la guía de onda
rectangular determinada en un corto circuito y b) Ondas Estacionarias (OE) con carga y en corto circuito (c.c).
Una forma empírica de adaptación de impedancias se realiza con un sintonizador de línea ranurada, el cual consiste de una guía ranurada dentro de la cual se ubica una sonda de posición y penetración variable [3]. Este dispositivo se puede colocar en serie con el circuito de microondas que se va a adaptar. La adaptación correspondiente se realiza variando la posición y profundidad del sintonizador lo que hace variar la admitancia de la guía, simultáneamente se mide la ROE hasta llevarla a un valor cercano a la unidad.
Otra forma de hacer adaptaciones es con la ayuda de un sintonizador calibrado y la carta de Smith. Para ello se procede así: se pone la guía de ondas en corto circuito y se miden las posiciones en las que se producen los mínimos de la onda estacionaria producida bajo estas condiciones, cabe anotar que en el plano del corto circuito se produce un mínimo de la onda de voltaje y que éste se repite exactamente a distancias iguales a λ/2, este hecho sirve mas tarde de referencia para medir la fase del coeficiente de reflexión de la onda reflejada en presencia de la carga (ver Figura No.2b). Enseguida se retira el corto circuito y se conecta la carga, se hacen las mediciones de las nuevas posiciones de los minimos de la onda estacionaria, producida con la carga, luego se determinan las distancias relativas (d1 y d2) entre los mínimos. Observando si la distancia desplazada "d" se realiza hacia la carga o hacia el generador (se pueden expresar las distancias relativas en función de λ). Luego utilizando la carta de Smith [2, 3], empleándola en el diagrama de admitancias, conociendo ROE y d que es la distancia hasta el corto circuito en el diagrama de admitancias de la carta de Smith, se puede hallar en dicha carta el valor de la posición y la admitancia requerida para que compense la admitancia en la línea de transmisión y el sistema quede acoplado adecuadamente.
3. Conclusiones
El estudio didáctico de los fenómenos de propagación, los patrones de radiación de antenas, y el problema de la adaptación de impedancias es adecuado realizarlo utilizando MO que, debido a sus características de frecuencia y longitud de onda, permiten realizar mediciones en forma fácil y precisa en el laboratorio.
Con el sistema de MO utilizado se pone en marcha la línea de Investigación en Instrumentación Física de la U.P. implementando métodos experimentales didácticos para la esudio de los fenómenos ondulatorios de las ondas electromagnéticas de gran interés para físicos e ingenieros.
4. Referencias
[1] R. Nery Vela, Líneas de Transmisión, Mac Graw Hill, 1999.
[2] J. M. Miranda, Ingeniería de Microondas, Prentice Hall, 2002.
[3] A. Harsany, Principles of microwave technology, 1999.
[4] B.B. Nikolsky , Electrodinámica y propagación de las ondas de Radio, Editorial Nauka, Moscú, 1989
[5] W.H. Kummer, E.S. Gillespie, Antenna Measurements, IEEE, vol 66, Nº4, April 1978.

domingo 30 de mayo de 2010

domingo 30 de mayo de 2010

Wireless Semiconductor Solutions for RF and Microwave Communications

Mobile communications are changing the way industries and individuals manage their lives, homes, offices and businesses. Avago Technologies is leading the wireless revolution with the industry's broadest range of mobile connectivity and wireless solutions, Avago Technologies is the partner of choice for leading wireless manufacturers and service providers worldwide. Avago Technologies products add value to every stage in the wireless production cycle.
Accelerating Progress in Wireless Communications RF Component Solutions
Avago Technologies' RF component innovations have been instrumental in driving the wireless revolution. Avago Technologies' Enhancement-mode pHEMT, CoolPAM and Film Bulk Acoustic Resonator (FBAR) technologies have set new benchmarks for battery life, size and performance. Avago Technologies pioneered the introduction of tiny RFICs, leading to the drastic reduction in end-product size that has helped the wireless market's rapid growth.
Avago Technologies combines its technology and design expertise in system, protocol and regulatory understanding drawn from three decades of microwave and RF experience. Avago Technologies can help customers meet the most demanding technical specifications and the most difficult regulatory tests around the world.
Wireless Semiconductor Solutions for RF and Microwave Communicationshttp://www.avagotech.com/docs/AV00-0117EN

domingo 30 de mayo de 2010

Radiofrecuencias y microondas

Las radiaciones ionizantes son aquellas que al interactuar con la materia la ionizan, es decir, producen átomos y/o restos de moléculas con carga eléctrica (iones). Las radiaciones no ionizantes carecen de la energía suficiente para producir ionización.

Las microondas y las radiofrecuencias son radiaciones electromagnéticas que pertenecen a la categoría de radiaciones no ionizantes. Son emitidas por aparatos eléctricos, electrónicos, los utilizados en radiocomunicaciones (inclusive vía satélite), emisiones de TV, radio AM-FM, radares, etc.

Características:

- Frecuencia: cantidad de veces por segundo en que se repite una variación de corriente o tensión. Se mide en ciclos por segundo, su unidad es elhertzio (Hz). (kilohertz o kHz son 1000Hz, megahertz o Mhz son 1.000.000 Hz, y gigahertz o GHz son 1.000.000.000 Hz).

- Potencia: "energía" de emisión. Se mide en watts(W) y sus múltiplos y submúltiplos.

- Intensidad: del campo eléctrico se mide en voltios por metro (V/m-1), y del campo magnético enamperios por metro (A/m-1).

Fuentes de emisión:

Naturales:

La ionósfera de nuestra atmósfera nos protege de las radiaciones del espacio exterior. No obstante, durante las tormentas se originan campos electromagnéticos y radiaciones. El total de la radiación emitida por el sol está estimada en unos 300 Ghz, pero es despreciable si consideramos que se distribuye sobre la superficie terrestre.

Antropogénicas:

A continuación se sintetizan las principales fuentes de emisión y su frecuencia.

Radiofrecuencias

Las radiofrecuencias oscilan entre 10 kHz (longitud de onda de 3 km) y 300 GHz (longitud de onda de 1 mm). Las microondas están incluídas dentro de la banda de radiofrecuencia.

Las aplicaciones de radiofrecuencia son múltiples. Algunos ejemplos de ello son:

  • Comunicaciones:

- radionavegación
- radiodifusión AM y FM
- televisión
- radionavegación aérea
- radioaficionados

  • Industria:

Metalúrgica:

- templado de metales
- soldaduras

Alimenticia: esterilización de alimentos

  • Medicina:

- diatermia

Microondas

Las microondas están dentro de una gama de frecuencia de 300 MHz (longitud de onda 1 m) a 300 GHz (longitud de onda de 1 mm).

Son ejemplos de la aplicación de éstas ondas:

  • Aeronáutica:

- tripulación de aviones
- lanzamiento de misiles

  • Comunicaciones:

- televisión
- telemetría
- sistema satelital
- radionavegación

  • Medicina:

- diatermia

  • Uso doméstico:

- hornos y calentadores

  • Investigación:

- meteorología
- física nuclear

Efectos por exposición:

La exposición a la radiación tiene en cuenta la intensidad y tipo de emisión; las características del medio y del objeto expuesto (tales como tamaño, forma, orientación, propiedades eléctricas, etc.).

La cantidad y localización de la energía absorbida por un cuerpo expuesto a la radiación de microondas dependerán del tamaño del cuerpo y de la longitud de onda de la radiación, así como también de la posición del primero en el campo de la radiación. En general,las ondas más cortas se absorben en superficie, mientras que las de mayor longitud producen un calentamiento más profundo. Cuando la longitud o el grosor de una parte del cuerpo son ligeramente inferiores a la longitud de onda de la radiación, se producen formas muy complicadas de dispersión y absorción. La radiación de microondas se absorbe de manera tan irregular que pueden formarse puntos calientes. Algunos autores consideran que los efectos de estas radiaciones no son sólo térmicos, sino que puede actuar de alguna forma sobre el sistema nervioso (Suess, M.J., 1985).

(*) La interacción de cierta radiación electromagnética con cuerpos conductores produce calor. Este hecho es utilizado por la medicina para realizar "diatermia". Terapia que consiste en la aplicación de emisiones controladas de radiofrecuencias y microondas para calentar distintos tejidos. Es utilizado en tratamientos de tejidos cancerosos, cuyas células son sensibles a temperaturas en un rango de 42º y 43º C. Los aparatos utilizados deben ser testeados para evitar "escapes" de campos electromagnéticos que provoquen lesiones irreversibles.

Los equipos de alta potencia como radares pueden someter a sus operadores a riesgos de incidencia de tumores malignos.

El establecimiento de 1 mW/cm2 como valor máximo de fuga contribuiría a controlar las exposiciones laborales o domésticas.

E. Dome

Ver
Contaminación
Contaminación electromagnética
Cáncer y factores ambientales

Bibliografía

-SCHINDER, E. O. M., 1995. Radiaciones no ionizantes. En: Ecología y Salud. Módulo 3, Parte II. Asociación de Alergia e Inmunología de Buenos Aires/OMS-OPS.

-ORGANIZACION MUNDIAL DE LA SALUD, 1984. Ginebra. Radiofrecuencias y microondas Criterios de Salud Ambiental, Vol. 16.

-ORGANIZACION MUNDIAL DE LA SALUD. 1984. Ginebra. Radiación ultravioleta. Criterios de Salud Ambiental, Vol. 14.

-SUESS, M. J., 1985. Higiene del medio, Radiaciones no ionizantes y salud. Foro Mundial de la Salud, Vol. 6: 61-68.

Radiofrecuencias y microondashttp://www3.cricyt.edu.ar/enciclopedia/terminos/RadioyMicro.htm

domingo 30 de mayo de 2010

DISPOSITIVOS DE ESTADO SÓLIDO EN MICROONDAS



1. Introducción
􀀉 La amplificación es una de las funciones más básicas y relevantes en los
circuitos de microondas.
􀀯 Los primeros amplificadores de microondas utilizaban tubos y
válvulas, como el klystron o los tubos de onda progresiva (TWT).
􀀯 El desarrollo de la física del estado sólido con materiales
semiconductores permitió la aplicación de dispositivos de dos
terminales como amplificadores. Es el caso de los diodos túnel y de
avalancha (Gunn e IMPATT son los ejemplos más destacados).
􀀯 Sin embargo, a partir de los años 70, la mayoría de los
amplificadores utilizan dispositivos de tres terminales. Primero
fueron los transistores de unión bipolar, con substrato de silicio
(BJT). Posteriormente, los de efecto de campo (FET), con sustrato
de GaAs (MESFET).
􀀯 Durante estas últimas décadas el desarrollo ha sido espectacular,
sobre todo en la obtención de compuestos pseudomórficos y de
heterouniones, cuyos logros más destacados han sido el transistor
bipolar de heterounión (HBT) y el transistor de alta movilidad
electrónica (HEMT).
􀀉 En la sigiuente tabla se resumen las características más destacadas de los
principales transistores de microondas:
En este capítulo nos centraremos en los amplificadores de estado sólido.

2. Dispositivos de estado sólido en microondas
􀀉 Sin que se pretenda hacer un estudio riguroso de la física del estado sólido
de los semiconductores, para abordar el estudio de los amplificadores de
microondas es preciso recordar ciertas nociones básicas.
􀀉 Los tres semiconductores más empleados son el silicio, el germanio y el
galio. Tomando como ejemplo el silicio, su estructura cristalina consiste
en una repetición tridimensional de una célula unitaria en forma de
tetraedro, con un átomo en cada vértice. Cada átomo tiene 14 electrones,
cuatro de los cuales son de valencia.

􀀉 Para formar compuestos estables, los átomos se asocian compartiendo,
cediendo o aceptando electrones de otros átomos para completar 8
electrones en el nivel más externo.
􀀉 Cuando dos átomos comparten varios electrones, al no alterarse las cargas
eléctricas respectivas, no se producen iones ni se mantienen dichas
uniones atómicas por atracción electrostática. A esto se le llama enlace
covalente. Los electrones de valencia sirven de unión de un átomo con el
siguiente, quedando fuertemente unidos al núcleo. A pesar de la
disponibilidad de cuatro electrones de valencia, pocos de ellos están libres
para contribuir a la conducción.



􀀉 A temperatura muy baja (digamos 0 ºK), el cristal semiconductor se
convierte en un buen dieléctrico, al no haber disponible ningún portador
de carga libre. Sin embargo, a temperatura ambiente algunos de los
enlaces covalentes se rompen, debido a la energía térmica, que puede
provocar que algún electrón quede libre para circular al azar por el
cristal. En enlace covalente incompleto se denomina hueco.
􀀉 Desde el punto de vista cuántico, la energía térmica confiere a cada
electrón una cierta cantidad de movimiento. Para cada cantidad de
movimiento sólo existe un conjunto discreto de energías accesibles,
llamadas bandas de energía, que se pueden representar ante la cantidad
de movimiento (cuasi impulso).



􀀉 Si en la situación descrita se aplica al cristal un campo eléctrico
constante, como resultado de las fuerzas electrostáticas, los electrones se
aceleran y la velocidad crecería indefinidamente con el tiempo, si no
fuera porque se producen colisiones con los iones de la red cristalina. En
cada colisión inelástica con un ion, cambia la cantidad de movimiento del
electrón (tanto en dirección como en velocidad), lo que puede provocar
cambios en el estado de la energía del electrón. Los cambios más
frecuentes tienen lugar entre las bandas de valencia y de conducción. En
este caso, el cambio en la cantidad de movimiento hace que un electrón
libre pase a ocupar un enlace covalente que estaba incompleto. Se trata
del proceso recombinación electrón-hueco.
􀀉 En cada colisión la velocidad del electrón se reduce a cero, en promedio.
Si el mínimo de la banda de conducción y el máximo de la banda de
valencia están alineados, las transiciones son verticales, y la cantidad de
movimiento del portador no cambia. Se trata de semiconductores de
transición directa, como el GaAs. Si ambos extremos no están alineados, la
red cristalina absorbe o cede la cantidad de movimiento correspondiente a
la diferencia de energía entre el mínimo de la banda de conducción y el
máximo de la banda de valencia. Se trata de semiconductores de
transición indirecta, como el Si.
􀀉 Tras múltiples colisiones no recombinantes, se alcanza una situación de
equilibrio y el electrón se mueve a una velocidad de desplazamiento (o de
arrastre) cuya dirección es opuesta a la del campo: v = μ E d , siendo μ la
movilidad electrónica del portador.



􀀉 Para aumentar el número de portadores de corriente se introducen
impurezas sobre el conductor intrínseco. En el caso del Si se emplean
impurezas pentavalentes (como el Sb, P y As). Estas impurezas producen
electrones en exceso, denominándose donadoras, y dan lugar a
semiconductores tipo n. En el caso del GaAs se utilizan como sustancias
donadoras impurezas de Si en sustitución de átomos de Ga.
􀀉 También se pueden dopar los semiconductores con sustancias aceptoras
para aumentar el número de huecos. En el caso del Si se emplean
impurezas de B, In y Ga. En el caso del GaAs, se sustituyen átomos de Ga
con elementos del grupo II (Be, Mg). Se trata de semiconductores de tipo
p. No obstante, en las tecnologías derivadas del GaAs, estos no tienen
aceptación, pues la movilidad electrónica de los huecos es muy baja.
2.1. Diodos semiconductores
􀀉 Cuando un semiconductor presenta simetría de traslación en torno a cierto
eje, se acostumbra a representar el diagrama de bandas de energía, no
ante la cantidad de movimiento, sino ante la dimensión longitudinal. En la
figura se representa el mínimo de la banda de valencia y el máximo de la
banda de conducción de un semiconductor tipo n y otro de tipo p.



􀀉 El carácter tipo p ó n de un semiconductor intrínseco depende de la
posición relativa del nivel de Fermi entre las bandas de valencia y
conducción. En un semiconductor tipo p el nivel de Fermi está más
próximo a la banda de valencia que a la de conducción. En uno tipo n,
ocurre lo contrario.
􀀉 Cuando se ponen en contacto un semiconductor de tipo p con uno de tipo
n, el exceso de huecos en la zona p provoca una corriente de difusión de
huecos que se desplaza hacia la zona n, al tiempo que otra corriente de
difusión de electrones viaja desde la zona n, en la que son mayoritarios, a
la zona p. Cada hueco que pasa a la zona n deja en la zona p una carga
ligada o ion fijo de impureza aceptora, mientras que los electrones que se
dirigen a la zona p dejan en la región n iones fijos de impurezas
donadoras.
􀀉 En esta situación tiene lugar el proceso de formación de una región de
carga espacial, formada por iones no compensados a ambos lados de la
unión, que provoca la aparición de un campo eléctrico que tiende a
desplazar a los huecos en el sentido del campo, y a los electrones en
sentido contrario. Aparece entonces una corriente de arrastre que se
opone a la de difusión.
􀀉 Cuando se alcanza la situación de equilibrio, los flujos de difusión y
arrastre se compensan y se crea una región de deplexión, vacía de
portadores de carga libres.




􀀉 Desde el punto de vista cuántico, el diagrama de bandas de energía de la
unión p-n adopta la forma que se indica en la figura. Resulta útil
considerar a los electrones como partículas pesadas, por lo que tienden a
ocupar los niveles inferiores de la banda de conducción, mientras que los
huecos pueden asimilarse a burbujas dentro de un líquido, por lo que
tienden a ocupar los estados superiores de la banda de valencia. De esta
manera, la curvatura del diagrama de bandas se opone a la difusión de los
portadores mayoritarios. Este fenómeno se conoce como barrera de
potencial.
􀀯 Si se aplica una diferencia de potencial positiva entre el cristal p y
el n, la barrera energética disminuye por debajo del valor de
equilibrio térmico. En este caso, el campo eléctrico no es lo
suficientemente intenso para impedir el flujo de portadores
mayoritarios hacia la zona donde son minoritarios, estableciéndose
una corriente que crece rápidamente con el potencial aplicado.
􀀯 Si la diferencia de potencial es negativa, la región de carga espacial
se hace más ancha. Los flujos de arrastre se hacen mayores que los
de difusión, estableciéndose una corriente inversa muy débil,
provocada por el paso de los portadores minoritarios a la zona
donde son mayoritarios.
􀀉 Ambos tipos de polarización se utilizan para conseguir amplificación en
circuitos de microondas.

2.1.1. Diodos de efecto Gunn. Dispositivos de transferencia
de electrones.
􀀉 Determinados semiconductores, como el GaAs o el InP presentan un
diagrama de bandas de energía con la presencia de varios valles en la
banda de conducción próximos entre sí. Cuando la intensidad de campo es
fuerte, se produce la transferencia de electrones al mínimo más alto de la
banda de conducción.
􀀉 La masa efectiva de los electrones es mayor en los niveles energéticos
superiores. Por tanto, la movilidad electrónica es menor que en los niveles
más bajos de energía.
􀀉 Como la conductividad depende de la movilidad electrónica, existe una
rango de intensidades de campo eléctrico en el cual se produce
transferencia de electrones desde un nivel bajo de energía a uno más alto,
de tal manera que la movilidad promedio, y con ella la conductividad,
decrecen cuando se aumenta la intensidad de campo.


􀀉 Este fenómeno se conoce como efecto Gunn, en honor a su descubridor, y
los dispositivos que lo exhiben se denominan diodos Gunn o dispositivos de
transferencia de electrones (TED). No obstante, debe quedar claro que no
se trata de diodos de unión p-n, sino que constan de un solo bloque
semiconductor (bulk).
􀀉 Si se representa la característica tensión-corriente de estos dispositivos,
se aprecia que la región en la que aparece dicho efecto, exhibe una
resistencia dinámica negativa. Dado que los dispositivos con resistencia
negativa se pueden modelar como fuentes de tensión controladas por
corriente, estos dispositivos se pueden utilizar para construir
amplificadores de microondas.
􀀉 El efecto Gunn puede provocar, a su vez, oscilaciones autosostenidas,
debido a que los electrones son acelerados y frenados a su paso por el
diodo, lo que también los habilita para el diseño de osciladores de
microondas:
􀀯 Para conseguir este modo de funcionamiento, se polariza el diodo
ligeramente por debajo de la tensión de umbral V1. Si en estas
condiciones, en cualquier punto del dispositivo el campo eléctrico
supera el umbral, entonces se produce la transferencia de
electrones al valle superior, donde la movilidad acusa un descenso.


􀀯 Se forma en este caso un pequeño dominio dipolar (dipole domain),
al tener una región en la que se acumula la carga, y otra de
deplexión. Este pequeño dipolo crea un campo que se suma con el
de polarización, haciendo que el campo total en el dominio dipolar
se eleve. Como la tensión aplicada es constante, el campo fuera
del dominio dipolar baja y se estabiliza por debajo del umbral.
􀀯 Cuando el dipolo alcanza el extremo del ánodo, se produce un pico
de corriente en los terminales del diodo, lo que eleva
momentáneamente el campo por encima del umbral, haciendo que
se forme un nuevo dipolo en el cátodo y que el proceso se repita
una vez más. La frecuencia de oscilación es: 1/ f = L vd , donde vd
representa la velocidad de arrastre del dipolo y L la longitud del
diodo. A temperatura ambiente, esta velocidad de arrastre
saturada es del orden de 107 cm/s para el caso de GaAs. Por tanto,
la longitud de la región activa, para una frecuencia de operación
típica de 10 GHz (banda X) es:


􀀯 Como el diodo Gunn se comporta como un dispositivo de corriente
constante, el circuito de polarización requiere una tensión
constante, para lo que se utiliza con frecuencia la disposición
mostrada en la figura.


2.1.2. Diodos de efecto avalancha.
􀀉 Cuando en una unión p-n la tensión de polarización inversa es importante,
un portador generado térmicamente se desplazará debido a la corriente
de arrastre. En su movimiento, los portadores pueden adquirir tal energía
que al colisionar con un ion de la red impriman suficiente energía para
romper un enlace covalente. De esta forma, cada nuevo portador produce
portadores adicionales (multiplicación de avalancha). El resultado es una
corriente de saturación inversa elevada.
􀀉 Los diodos de microondas basados en este principio se conocen con los
siguientes nombres:
􀀯 IMPATT (IMPact ionization Avalanche Transit Time): unión p+nin+
􀀯 BARRITT (BARRier Injection Transit Time): unión p+np+
􀀯 TRAPATT (TRApped Plasma Triggered Transit): unión p+nn+
􀀉 El diodo IMPATT (también conocido como diodo Read) se suele operar en
régimen pulsante, polarizándose negativamente, con una tensión de DC
próxima a la de ruptura, y una señal de RF superpuesta, de tal manera que
durante los semiciclos positivos de RF se produce la avalancha.

􀀯 En los semiciclos positivos de RF, el campo eléctrico en la zona de
avalancha aumenta, así como la tasa de generación de nuevos
portadores por efecto de la multiplicación, así que se produce un
pico en la corriente de avalancha. Incluso después de haber
alcanzado la tensión de RF su valor máximo, la corriente de
avalancha sigue creciendo, ya que el número de portadores de
carga sigue creciendo.
􀀯 Tan sólo una vez iniciado el semiciclo negativo de RF, el proceso de
multiplicación de avalancha se detiene. Pero los portadores de
carga que se han creado durante el semiciclo anterior deben
atravesar todavía la región de arrastre, lo que induce en el circuito
una corriente externa que tiene un desfase superior a 90º con la
señal de RF. Como tensión y corriente se encuentran
prácticamente en contrafase, el diodo exhibe una resistencia
negativa, comportándose como un dispositivo activo.


􀀯 Como el diodo IMPATT se comporta como un dispositivo de tensión
constante, el circuito de polarización requiere una corriente
constante, para lo que se utiliza con frecuencia un transistor
regulador de corriente, como el mostrado en la figura.
2.2. Transistores bipolares
􀀉 El transistor bipolar consiste en dos uniones p-n encapsuladas en el mismo
sustrato. Se llaman bipolares por existir dos tipos de portadores:
electrones y huecos. Aunque existen dos dispositivos duales, denominados
npn y pnp, en microondas se prefieren los primeros, al tener mayor
movilidad electrónica los electrones que los huecos.
􀀉 Los tres terminales se denominan emisor (E), base (B) y colector (C). En el
emisor, la densidad de dopado suele ser alta, de manera que cuando la
unión BE se polariza directamente, un importante flujo de difusión alcanza
la base del transistor.
􀀉 Para que no se pierdan electrones por recombinación en la base, el
espesor de ésta se hace muy pequeño (~ 0.1 μm), y la unión CB se polariza
inversamente.


􀀉 Bajo polarización inversa de la unión CB, los electrones son barridos al
interior del colector, contribuyendo a la corriente. Por otra parte, los
electrones que se generan térmicamente en la base, por efecto de la
corriente de arrastre, son barridos hacia el colector, sumándose a la
corriente de inyección de la unión BE.
􀀉 En microondas, su realización suele ser interdigital multidedo, con el
objeto de tener unos tiempos de tránsito razonables a través de la base y
suficiente área de emisor.





􀀉 A la hora de integrar un transistor de microondas en un amplificador, se
suele partir de la medida de sus parámetros S a distintas frecuencias, con
lo cual se puede sintetizar un modelo circuital equivalente. En el caso de
los transistores bipolares, el más frecuente es el indicado en la figura.
􀀉 Como figura de mérito, se suele caracterizar un transistor de microondas
por su frecuencia de transición fT, que se define como la frecuencia a la
que la ganancia de corriente con salida en cortocircuito se hace la unidad.
􀀯 Para el caso unilateral, puede suponerse Ccb' = 0, en cuyo caso:


􀀯 Se suele expresar también T ec f = 1τ , siendo ec e b c τ =τ +τ +τ el
tiempo de tránsito emisor-colector. De los tres tiempos, el más
crítico es el tiempo de tránsito a través de la base, pues el emisor
está altamente dopado.


􀀉 El ruido en un transistor bipolar es de naturaleza térmica, y se genera en
las resistencias de los electrodos. También presenta ruido de disparo
(shot), debido a la fluctuación de los portadores al atravesar las uniones
semiconductoras. El flujo de portadores de carga a través de una unión p-n
dista mucho de ser continua, sino que se asemeja a las gotas de lluvia
cuando caen sobre un techo de aluminio. El ruido shot, al igual que el
ruido térmico, se asemeja al ruido blanco, pero es proporcional a las
corrientes de polarización en DC. Por este motivo, los transistores
bipolares de microondas se polarizan en una región con pequeña
polarización en DC. El mínimo factor de ruido en un BJT puede
aproximarse por la expresión:



􀀯 Este factor de ruido sólo se puede alcanzar bajo apropiadas
condiciones de polarización.
􀀉 Como redes de polarización se utilizan circuitos que permitan, por un
lado, independencia a los cambios de temperatura y a las variaciones de
los parámetros del transistor, y por otro, que el circuito de polarización
quede aislado de los circuitos de alta frecuencia, de tal manera que las
señales de microondas no fluyan por el circuito de polarización.
􀀯 El primer objetivo se puede alcanzar incorporando realimentación
DC en el circuito de polarización.
􀀯 El segundo objetivo se puede satisfacer introduciendo elementos
inductivos (choke) en serie con los componentes DC, que no dejan
pasar las altas frecuencias, y elementos capacitivos en paralelo
(by-pass) con los componentes DC, para que las corrientes de alta
frecuencia se deriven por los elementos capacitivos y no afecten a
las redes de polarización.



2.3. Transistores de efecto de campo
􀀉 Formados por un canal tipo n, se puede obligar a que los portadores
mayoritarios, electrones, fluyan a lo largo del canal aplicando una
diferencia de potencial entre los terminales de drenador (D) y fuente (S).
El tercer terminal, llamado puerta (G), se forma conectando
eléctricamente dos zonas con dopado p+.




􀀉 Las regiones de puerta y canal forman una unión p-n que en su
funcionamiento se mantiene con polarización inversa mediante una
tensión VGS < 0 y VDS > 0. Debido a la región de carga espacial que se forma
a ambos lados del canal cuando la unión p-n se polariza inversamente, el
ancho efectivo del canal disminuye al aumentar la polarización inversa,
pudiendo incluso llegar a obstruirse completamente.
􀀉 En consecuencia, para una determinada tensión VDS, la corriente que
alcanza al drenador depende de la tensión que modula la anchura del
canal.
􀀉 Si para cierta tensión VGS el canal está abierto, para valores bajos de VDS,
la corriente ID dependerá linealmente de VDS, pero conforme aumenta VDS
la unión p-n se polariza inversamente, provocando que la región de carga
espacial reduzca la anchura del canal. A medida que aumenta VDS la
corriente deja de crecer con VDS y se hace independiente de esta tensión.
􀀉 Los transistores de efecto de campo en microondas suelen hacerse con
sustratos de GaAs, al tener mejor movilidad electrónica. La configuración
típica es una unión metal-semiconductor (MESFET), que reemplaza la
unión puerta-canal. Para alcanzar frecuencias muy altas (100 GHz) se
utilizan longitudes de puerta del orden de 0.2 μm.
􀀉 Los electrones tienen mayor energía, en promedio, en el semiconductor
que en el metal. Por tanto, el contacto metal-semiconductor produce una
transferencia de electrones del semiconductor al metal, el cual queda
cargado negativamente. Esta presencia de carga produce un campo
eléctrico que atrae los electrones en sentido contrario, alcanzándose una
situación de equilibrio.


􀀉 El circuito equivalente de un transistor de efecto de campo de microondas
es el que se indica en la figura, junto con los valores típicos de sus
parámetros, que se ajustan a partir de las medidas de los parámetros S.
􀀉 La frecuencia de transición, en el caso unilateral, se puede expresar
como:


􀀉 Se suele expresar también T s g f = v L , donde vs es la velocidad de
saturación de los electrones y Lg la longitud de la puerta.

􀀉 En un MESFET, al no haber uniones p-n, no existe ruido shot, aunque sí
ruido térmico y ruido flicker, Este último tiene una respuesta en
frecuencia del tipo 1/f, por lo que en microondas no suele afectar. El
minimo factor de ruido que puede alcanzarse con un transistor MESFET
puede aproximarse por la siguiente expresión:

􀀉 En cuanto a las redes de polarización, en aplicaciones de pequeña señal,
la mejor respuesta frente al ruido se obtiene cuando la corriente DC es un
20 % de la de saturación para VGS = 0. No obstante, para pequeños valores
de la corriente, la transconductancia se reduce, y con ella la ganancia,
por lo que siempre existe un compromiso. En la figura se indican dos
posibles redes de polarización.


􀀉 HBT y HEMT son la siglas de Heterojunction Bipolar Transistor y High
Electron Mobility Transistor, respectivamente. Se trata de dispositivos de
tres terminales formados por la combinación de diferentes materiales con
distinto salto de banda prohibida (gap band). Las heteroestructuras que se
utilizan suelen ser compuestos de GaAs – AlGaAs.


􀀉 En el caso del HBT, el empleo de materiales en el emisor con un salto de
banda prohibida mayor que los de la base proporciona un desplazamiento
de las bandas en la heterointerfaz que favorece la inyección de electrones
en la base, mientras que se retarda la inyección de huecos en el emisor.


􀀉 El empleo de heteroestructuras permite dotar a los transistores de efecto
de campo de canales con alta movilidad electrónica. Los dispositivos
resultantes reciben el nombre de HEMT. Debido al mayor salto de banda
prohibida del AlGaAs comparado con las regiosnes adyacentes de AsGa, los
electrones libres se difunden desde el AlGaAs en el GaAs y forma un gas
electrónico bidimensional en la heterointerfaz. Una barrera de potencial
confina los electrones libres en una lámina muy estrecha.



domingo 30 de mayo de 2010

Controladora de RF Tecnología de Radio Frecuencia


La Tecnología de Radio Frecuencia es la más adecuada para el control de movimiento de personal, maquinaria y materiales. Es utilizada en distintos tipos de aplicaciones que van desde el control de vehículos, pasando por instalaciones de peaje hasta el control de MRE de los soldados.

La Controladora RF hace que la utilización de esta tecnología sea sencilla, confiable y efectiva con relación a su costo. Esta controladora viene en dos modelos, Maestra y esclava.

La controladora RF Maestra ofrece:

  • Un gabinete de 15"X15"X15", de fibra de vidrio de uso pesado con refuerzos de metal, con una amplia variedad de opciones de montaje para usos internos o externos.
  • Una antena direccional la cual orienta el 80 % del campo de detección hacia una dirección incrementando así el alcance, reduciendo el riesgo de interferencia y mejorando la sensibilidad del lector.
  • Lectora RF de largo alcance con un rango de lectura de hasta 200'.
  • Un panel de control de acceso completamente funcional con capacidad para controlar 2 lectoras, 20.000 tarjetas, con buffer de transacciones y de descarte, antipass-back, y muchas otras características únicas.

  • Fuente protegida contra fallos de energía y picos de tensión y baterías de respaldo.
  • Censores opcionales para cerraduras, seguros o aplicaciones de alerta.
  • Sistemas de red para calibración y chequeo en campo.
  • Puerto de comunicaciones para RS232, RS485, directo, por módem o conexiones inalámbricas.
  • Software de control para conexión directa a través de una PC, teléfono o la Internet.
  • La controladora esclava tiene el mismo gabinete que la Maestra solo que en el se encuentra la lectora de RF y la antena. La controladora esclava puede funcionar con otros paneles de control de acceso.
  • Las controladoras de RF ahorran hasta un 20% en los costos de equipos, un 50% en los costos de instalación y hasta un 30% en los costos de mantenimiento.
  • Algunas de sus aplicaciones pueden verse en Entradas con Barreras, Control de Acceso a Instalaciones, Rastreo y Monitoreo de activos.

Lectoras y Tarjetas RF

Los Sistemas de Radio Frecuencia (RF) están basados en dos componentes principales, una lectora de radio frecuencia y un transponder o tarjeta. Los mismos trabajan en forma conjunta para proveer una solución para identificar personas, objetos o vehículos sin la necesidad de que la tarjeta tenga un contacto físico. En estos sistemas la tarjeta no tiene que estar en contacto visual con la lectora y funcionan muy bien en ambientes industriales o con mucho polvo o suciedad.

Básicamente la tarjeta de RF es un transmisor compuesto por una antena, un microchip y una batería. La información es almacenada en la tarjeta, la cual puede ser tan pequeña como un número de identificación o tan grande como kilo bites de datos.
La información codificada en la tarjeta es convertida en un campo electromagnético por el microchip y transmitida a través de la antena en intervalos predefinidos.

La lectora esta compuesta por una antena, un receptor de radio frecuencia y un procesador. La antena recolecta la energía electromagnética transmitida por la tarjeta y se la pasa al receptor. El procesador decodifica la información recibida y se la pasa a la PC controladora o al panel de control. Los rangos de distancia de lectura pueden ser programados a través del software propietario. Diferentes tipos de antenas pueden ser conectados a la lectora para configurar el campo de recepción.

Amtel ofrece dos tipos diferentes de dispositivos de RF, los primeros operan en el espectro de UHF (modelos MF – 251-MF, 252-MF-WG, 252-MF1, 252-MF2 & 252-MF3) y los otros en el espectro de microondas (modelo 1501 – 251-RFH-1501).

Controladora de RF Tecnología de Radio Frecuenciahttp://acpty.angelfire.com/4.html

Das Leben geht weiter so oder so...


Datos:
Nombre: Daniela Carolina Margeit Márquez
CI:18762867
Materia: EES
Dirección Blog creado por mi:http://callelita.blogspot.com/


No hay comentarios:

Publicar un comentario